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ABSTRACT

COVARIANCE ESTIMATION OF SPATIO-TEMPORAL

RANDOM VARIABLES WITH KRONECKER PRODUCT

BASED MODELS

Covariance estimation is a widely studied topic. Due to the nature of many prob-

lems, high-dimensional Spatio-temporal scenarios are considered frequently. In some

cases, the true covariance matrices are also expected to have a Kronecker product-based

representation. Especially in wind speed analysis, the true covariance matrix can be as-

sumed to have spatial and temporal Kronecker factors. This thesis studies Kronecker

product-based covariance estimation models. Also, a new Kronecker product-based

method is proposed with experimentation results showing its performance.
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ÖZET

KRONECKER ÇARPIMI TABANLI MODELLER İLE

UZAY-ZAMANSAL RASSAL DEĞİŞKENLERİN

KOVARYANS TAHMİNİ

Kovaryans tahmini birçok farklı alanda çalışılan bir konudur. Bu konudaki

bazı problemlerde, doğaları gereği, çok boyutlu uzay-zamansal veriler incelenmekte-

dir. Ayrıca, bazı senaryolarda gerçek kovaryans matrisinin başka kovaryans matris-

lerinin Kronecker çarpımları temelli gösterimler şeklinde yazılabileceği beklenmektedir.

Özellikle rüzgar hızınin incelendiği çalışmalarda gerçek kovaryans matrisinin uzaysal

ve zamansal Kronecker çarpanları olduğu varsayılarak çalışmalar yürütülmüştür. Bu

tezde kovaryans matrisi tahmini için geliştirilmiş Kronecker çarpımı temelli modeller

incelenmektedir. Ayrıca Kronecker çarpımı bazlı yeni bir model tanımlanmış ve deney

sonuçlarıyla kullanılabilirliği desteklenmiştir.
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1. INTRODUCTION

Covariance estimation is a widely studied topic in many areas such as geospatial

studies [1], signal processing [2], and finance [3]. Also, there are many cases where using

high-dimensional data is inevitable. Especially in geospatial studies [4, 5] and signal

processing, [4,5] high dimension problem is addressed. Low-dimensional approximation

of the covariance matrix is one way to handle this problem. Many studies propose

different methods [6]. Sparse estimations [7], low-rank estimations [8] and Kronecker

factorization [9–11] can be given as recent examples of these methods. Kronecker

Product (KP) based models can also be categorized; many studies assume the existence

of an underlying Kronecker product structure for the true covariance matrix, [9–11]

while others try to find the nearest Kronecker product structured covariance matrix

[12]. The matrices that can be expressed as a Kronecker product of other matrices

with lesser dimensions are said to be separable. This thesis assumes the existence of

the underlying KP sum structure and focuses on KP-based models, especially in wind

speed analysis.

For multivariate wind speed analysis and wind-based electricity production, it is

convenient to be interested in KP-based low-rank estimations of the covariance matrix.

This is because of the high dimensional and Spatio-temporal nature of the wind analysis

problem [11]. Wind speed analysis can naturally be a high-dimensional problem as the

real-world data may come from many wind sensors spread across a region. Even when

the number of spatial features is small, it is preferred to use interpolation to increase

the dimension. Also, due to the nature of wind as a fluid, using a big window of

temporal data is beneficial. When this problem is combined with wind-based electricity

production, using polynomially derived wind speed features is likewise crucial. The

benefit of using wind speed squared is straightforward, considering the classic kinetic

energy formula. Additionally, it has been shown that third-degree polynomials of wind

speed increase the performance of many production forecasting models [13]. All these

results bring the use of very high-dimensional data.
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In addition to the high dimensionality, again from the nature of the problem, de-

composing the data to spatial and temporal variables is reasonable. With KP represen-

tation, we can separate the true covariance matrix to spatial and temporal covariance

matrices. We also know that a temporal covariance matrix is a Toeplitz matrix and it

has been shown that KP based models perform even better when one of the matrices

are Toeplitz [9].

Throughout this thesis, we assume that the true covariance matrix Σ of a multi-

variate data with d = dsdt dimensions has the form

Σ =
r∑

i=1

Ai ⊗Bi

where Ai and Bi are symmetric and positive semi-definite matrices with dim(Ai) =

ds×ds and dim(Bi) = dt×dt. We also inspect cases where one or both of these matrices

are Toeplitz. For this type of separation, we inspect some estimation models in detail.

It is easy to show that this representation exists for any matrix for a large enough

r [10]. However, matrices that can be represented with small r can be estimated better

with the discussed models. We analyse the Frobenius estimation error’s norm and

show bounds on that norm. Also we discuss the convergence rates of the estimations

in different cases.

We then propose a new model, Temporally Reinforced Kronecker Factorization

(TRKF), for reinforcing the covariance matrix estimations when a spatio-temporal or

a similar decomposition for the data is available.

We run simulations for different cases and present their results for confirming

the theoretical arguments. A wide range of Kronecker factor types, separation ranks,

dimensions and number of observations are used to show the generality of the results.

Also we tested the models on real world multivariate wind speed and wind-based elec-

tricity production data from different regions of Turkey. These experiments confirmed

the credibility of the discussed models and show some valuable insights from the nature

of wind.
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The rest of this thesis is as follows. In Chapter 2 we provide some basics on

preliminaries. These include results from linear algebra and probability theory. Chap-

ter 3 discusses the theoretical background of our study, with the main emphasis being

on the permuted rank penalized least squares. Further we introduce a new approach

TRKF. In Chapter 4 we first verify the theoretical results with experiments, then show

our proposed approach’s performance. We conclude the thesis in Chapter 5 with a

summary and possible directions.
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2. PRELIMINARIES

2.1. Basic Definitions

The purpose of this section is to give some basic definitions that will be required in

the rest of the thesis. Starting from certain definitions from elementary linear algebra,

we then recall matrix norms and provide some further discussions.

Definition 2.1. A matrix A is called symmetric if it equals its transpose, i.e. A =

AT , where AT represents the transpose of A.

Definition 2.2. A matrix is called Hermitian if it is equal to the transpose of its

complex conjugate, i.e. A is Hermitian if A = AT where A represents the complex

conjugate of A.

Note that for real matrices, Hermitian and symmetric mean the same.

Definition 2.3. Let A be a symmetric matrix of size n × n. Then, A is said to be

positive-definite if xTAx > 0 for all x ∈ Rn \ {0}, and positive semi-definite if

xTAx ≥ 0 for all x ∈ Rn.

The definition for complex matrices is similar. If A is a Hermitian matrix of size

n × n, A is said to be positive-definite if xTAx > 0 for all x ∈ Cn \ {0}, and positive

semi-definite if xTAx ≥ 0 for all x ∈ Cn.

Definition 2.4. A covariance matrix C is a symmetric and positive-definite matrix

that contains the covariances between the elements of multivariate random variables.

More precisely, if X1, . . . , Xn are random variables whose second moments exist, Cij =

Cov(Xi, Xj) for i, j = 1, 2, . . . , n.

Clearly, the main diagonal of a covariance matrix contains the variances of the

variables.
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Definition 2.5. An n×n matrix A is said to be a Toeplitz Matrix if there are some

constants d1−n, . . . , dn−1 such that Ai,j = di−j whenever i, j ∈ {1, 2, . . . , n}.

Toeplitz matrices are also known to be diagonal-constant matrices, because each

descending diagonal entry of the matrix from left to right is constant. A visual example

for a Toeplitz matrix is


a b c d

e a b c

f e a b

g f e a

 .

Below we will be interested in these special matrices since some of the covariance

matrices in our framework will be approximately Toeplitz (e.g. temporal covariance

matrices).

Next we will briefly go over matrix norms which will be important in our study

below. Let us begin with recalling vector norms for this purpose.

Definition 2.6. Let V be a vector space over a field F. A mapping

∥ · ∥ : V → R

is a vector norm if, for all x,y ∈ V and all c ∈ F, the followings hold:

• ∥x∥ ≥ 0

• ∥x∥ = 0 ⇐⇒ x = 0

• ∥cx∥ = |c|∥x∥

• ∥x+ y∥ ≤ ∥x∥+ ∥.y∥

Definition 2.7. The Euclidean norm (ℓ2-norm) of a vector x = [x1 . . . xn]
T ∈ Rn is

∥x∥2 =
(
|x1|2 + |x2|2 + · · ·+ |xn|2

) 1
2 .

Note that the Euclidean norm is a special case of the ℓp-norms.
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Definition 2.8. ℓp-norm of a vector x ∈ Rn is ∥x∥p = (|x1|p + |x2|p + · · ·+ |xn|p)
1
p .

A vector norm defined on a vector space of matrices is called a matrix norm.

Definition 2.9. The matrix-p norm ∥A∥p of a matrix A is defined to be ∥A∥p =

supx ̸=0
∥Ax∥p
∥x∥p .

One nice and useful property enjoyed by matrix p-norms is the following.

Proposition 2.10. Matrix p-norm is sub-multiplicative: If A ∈ Rm×n and x ∈ Rn,

then ∥Ax∥p ≤ ∥A∥p∥x∥p.

Definition 2.11. The spectral norm of a matrix A ∈ Rm×n is defined as

∥A∥2 = sup
x ̸=0

∥Ax∥2
∥x∥2

.

Some further discussion on matrix norms will be included in the next section

after reviewing singular values. We conclude this section with two more independent

definitions that will be useful in the sequel.

Definition 2.12. The operator vec on a matrix stacks the columns of the matrix on

top of each other to create a vector.

A visual example of the vec operation is shown below:

vec

a11 a12 a13

a21 a22 a23

 =



a11

a21

a12

a22

a13

a23


.

The following probabilistic big oh notation will be used in our theoretical discus-

sions.
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Definition 2.13. Stochastic boundedness is denoted with Op. For a given sequence

of random variables Xn, the equation Xn = Op(cn) as n → ∞ represents: ∀ε > 0,

∃M,N > 0 finite such that, P
(∣∣∣Xn

cn

∣∣∣ > M
)
< ε for all n > N .

2.2. Singular Value Decomposition and Principal Component Analysis

In this section, we will define and discuss Principal Component Analysis (PCA),

Eigendecomposition, and Singular Value Decomposition (SVD). PCA is a commonly

used method for dimensionality reduction because it easily extracts the most “impor-

tant” information from the data while reducing the dimension. First, with eigende-

composition, a new basis for the data is created. Then, the first principal component

(PC) is created using the eigenvector corresponding to the largest eigenvalue. This

method ensures that the first PC carries the maximum possible variance of the data.

Before going into further details, we first recall basics related to eigenvalues and

explain eigendecomposition. Recall that for a square matrix A, the non-zero vectors

v and corresponding scalars λ satisfying the equation Av = λv are called as the

eigenvectors and eigenvalues of A, respectively.

It is well known that any symmetric matrix A can be decomposed as

A = VΛV−1

where the columns of V are eigenvectors of A and where Λ is a diagonal matrix

whose diagonal entries are the eigenvalues of A. This decomposition is called the

eigendecomposition of A.

In this thesis, our main concern will be on positive semi-definite matrices. So let

us mention a few properties of eigendecompositions of positive semi-definite matrices

before going further:

• Eigendecomposition VΛV−1 of any positive semi-definite matrix A always exists.

• Eigenvalues of such matrices are always non-zero, and eigenvectors are pairwise
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orthogonal when their eigenvalues are different.

• Because eigenvectors corresponding to different eigenvalues are orthogonal, it is

possible to store all the eigenvectors in an orthogonal matrix.

• VT = V−1

Now we will define a generalized eigendecomposition method, which loosens the

square matrix condition.

Definition 2.14. Singular values of a real matrix A are defined to be the square

roots of the eigenvalues of the matrix ATA.

Definition 2.15. Singular Value Decomposition of a (rectangular) matrix A is:

A = U∆V T , where the columns of U are the eigenvectors of AAT , the columns of V

are the eigenvectors of ATA and ∆ is a diagonal matrix whose diagonal entries are the

singular values.

The columns of U and V are called the left and right singular vectors of A,

respectively. By convention, the singular values are ordered, i.e., σ1 ≥ σ2 ≥ · · · ≥ 0.

Let us also note that theThresholded Singular Value Decomposition (SVT)

is a simple modification to SVD. With SVT, small singular values are filtered out to

obtain a low-rank approximation of a given matrix. It is also used for convex relaxation

of rank minimization problems [14].

With the given definitions and remarks, we can talk more about PCA. A new

basis for data can be created using the eigenvectors of the covariance matrix. As the

eigenvectors are unit vectors, the corresponding eigenvalues are correlated with the

explained variance of the data. Thus, choosing the eigenvectors corresponding to only

the large enough eigenvalues creates a new representation of the data with fewer di-

mensions but almost the same information. Note that the old basis vectors had one

element as 1 and all others as 0; in other words, each basis vector was only for one

variable of the multivariate data. Also, the previous data had features that were corre-

lated with each other. The new basis vectors let us contain information from multiple
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variables in one dimension, and the new derived features (PCs) are not correlated. An

additional note for the application is that instead of doing eigendecomposition to the

full data, it is usually preferred to do partial SVD for computational reasons.

We now go back to matrix norms and conclude this section with some results

and notes related to singular values and norms. The first enties the spectral norm to

spectral values.

Proposition 2.16. The spectral norm of a matrix A equals to the largest singular value

σ1 of A.

In other words,

∥A∥2 =
√

λmax(ATA) = max {σ(A)}

where σ(A) is the set of singular values of A.

Definition 2.17. Frobenius norm of an m× n matrix A is defined to be

∥A∥F =

√√√√ n∑
i,j=1

aij2 =
√

tr(ATA) =

√√√√min(m,n)∑
i=1

σ2
i (A).

Note that we have

∥A∥F =
√
tr(ATA) =

√√√√min(m,n)∑
i=1

σ2
i (A).

One nice property of the Frobenius norm is a certain permutation invariance. Namely,

letting τ be a permutation in Smn, if permute the elements of an m × n matrix A by

using τ to obtain a new matrix A′, we have

∥A∥F =

√√√√ n∑
i,j=1

aij2 =

√√√√ n∑
i,j=1

aτ(i)τ(j)2 = ∥A′∥F .

As we have defined SVD and the Frobenius norm, we give a fundamental result

on low-rank matrix estimation.

Proposition 2.18 (Eckart-Young Theorem [15]). Let A be a matrix with rank(A) =

k. Non-increasingly ordered singular values of A are σi and corresponding left and
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right singular vectors are ui and vi, respectively. Then, any rank-r matrix Ar =∑r
i=1 σiuiv

T
i , with r ≤ k, satisfies

Ar = argmin
A⋆:rank(A⋆)=r

∥A− A⋆∥F .

Note that Eckart-Young theorem states that rank-r approximation of any matrix

can be found with a truncated SVD but in many scenarios this problem is not convex,

that will be addressed in the following sections.

2.3. Kronecker Products

Let A ∈ Rp1×p2 and B ∈ Rq1×q2 . Then we define the Kronecker Product as

the operation ⊗ : (Rp1×p2 ,Rq1×q2) → Rp1q1×p2q2 , such that

A⊗B =


a1,1B . . . a1,p2B
...

. . .
...

ap1,1B . . . ap1,p2B


where ai,j is the element at i’th row and jth column of the matrix A.

An example visual that shows A⊗B for A ∈ R2×2 andB ∈ R3×3:

a11 a12

a21 a22

⊗


b11 b12 b13

b21 b22 b23

b31 b32 b33

 =



a11b11 a11b12 a11b13 a12b11 a12b12 a13b13

a11b21 a11b22 a11b23 a12b21 a12b22 a13b23

a11b31 a11b32 a11b33 a12b31 a12b32 a13b33

a21b11 a21b12 a21b13 a22b11 a22b12 a23b13

a21b21 a21b22 a21b23 a22b21 a22b22 a23b23

a21b31 a21b32 a21b33 a22b31 a22b32 a23b33


.

2.3.1. Kronecker Product Basic Properties

Proposition 2.19. The following properties hold for Kronecker product (here α, β are

scalars, and the matrices A,B,C,D are assumed to be compatible in terms of the given

operations):
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(i) Distributive:

• (A+B)⊗ C = (A⊗ C) + (B ⊗ C)

• A⊗ (B + C) = (A⊗ C) + (A⊗B)

(ii) Scalars:

• α⊗ A = αA

• A⊗ α = αA

• (αA)⊗ (βB) = (αβ)(A⊗B)

(iii) Associative:

• (A⊗B)⊗ C = A⊗ (B ⊗ C)

(iv) Inverse:

• (A⊗B)−1 = A−1 ⊗B−1

(v) Transpose:

• (A⊗B)T = AT ⊗BT

(vi) Multi Products: if AC and BD products exist (or they are well defined):

• (A⊗B)(C ⊗D) = (AC)⊗ (BD)

(vii) Trace:

• tr(A⊗B) = tr(A) tr(B)

(viii) Rank:

• rank(A⊗B) = rank(A)rank(B).

Proofs of these results are elementary. We just prove the trace proposition as an

exemplary work.

Proof. (of tr(A⊗ B) = tr(A) tr(B)) Here we inherently assume that A, B are square.

Let dim(A) = p× p and dim(B) = q × q. Note that

tr(A) =

p∑
i=1

aii.

Then, from directly from the definition of Kronecker product, we get

tr(A⊗B) =

p∑
i=1

q∑
j=1

aiibjj =

p∑
i=1

aii

q∑
j=1

bjj = tr(A) tr(B).
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2.3.2. Eigenvalues

In this subsection, we briefly go over the relation between eigenvalues and Kro-

necker products. The following result on deriving the eigenvalues and eigenvectors of

a matrix from its Kronecker Product factors is classical.

Theorem 2.20. Let A and B be square matrices with respective sizes p× p and q× q.

Assume that both A and B are of full rank. Let λ
(a)
1 , λ

(a)
2 , . . . , λ

(a)
p and u1,u2, . . . ,up

be the eigenvalues and the corresponding eigenvectors of A. Let λ
(b)
1 , λ

(b)
2 , . . . , λ

(b)
q and

v1,v2, . . . ,vq be the eigenvalues and the corresponding eigenvectors of B. Then eigen-

values and the corresponding eigenvectors of the matrix A⊗B are: λ
(a)
i λ

(b)
j and ui⊗vj

for i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , q}.

Proof. From the definition of an eigenvalue, we get

Aui = λ
(a)
i ui and Bvj = λ

(b)
j vj.

We also know that the following two equalities hold

(Aui)⊗ (Bvj) = (A⊗B)(ui ⊗ vj)

(λ
(a)
i ui)⊗ (λ

(b)
j vj) = λ

(a)
i λ

(b)
j (ui ⊗ vj).

Combining these we obtain

(A⊗B)(ui ⊗ vj) = (Aui)⊗ (Bvj) = (λ
(a)
i ui)⊗ (λ

(b)
j vj) = λ

(a)
i λ

(b)
j (ui ⊗ vj).

2.3.3. Useful Results about Kronecker Product

Various properties of matrices are preserved under Kronecker products. We list

three in the following proposition.
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Proposition 2.21. The following are true:

If A and B are


Hermitian

positive definite

Toeplitz

 , then A⊗B is


Hermitian

positive definite

Toeplitz

 .

Here we will discuss just the proof for the Hermitian case. For the proofs others

see, for example, Van Loan [10]. The cited work contains further properties that are

(and are not) preserved under Kronecker products.

For the proof of (A ⊗ B) is Hermitian when A,B are Hermitian, first we note

without proof that the property (A ⊗ B)∗ = A∗ ⊗ B∗ holds. Next we recall that for

u, v ∈ Cn, inner product is defined as

⟨v , w⟩ :=
n∑

i=1

uivi

where u is the complex conjugate of u. Now, assume A and B are Hermitian matrices.

By definition of Hermitian adjoint, we have

⟨(A⊗B)v , w⟩ = ⟨v , (A⊗B)∗w⟩

and we want to show ⟨(A⊗B)v , w⟩ = ⟨v , (A⊗B)w⟩ for any v, w. Thus, the following

equations

⟨(A⊗B)v , w⟩ = ⟨v , (A⊗B)∗w⟩

= ⟨v , (A∗ ⊗B∗)w⟩

= ⟨v , (A⊗B)w⟩

finalize the proof.

2.4. Reshaping and Visualizing Matrices

As matrix reshaping has an important part in this thesis, we explain the procedure

visually. Before defining the reshape function R of Van Loan [10], we start with

visualizing the sample covariance matrix (SCM).
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Let v ∈ Rd, be a multivariate normal random variable with v ∼ N(0, Σ) and

d = dsdt. Taking n i.i.d observations {vα}nα=1, the SCM can be calculated using

Σ̂n =
1

n

n∑
α=1

vαv
T
α .

Letting aα(i, j) = vα(i)vα(j)
T , where v(i) represents the i-th element of the vector v,

we can visualize Σ̂n in more detail

Σ̂n =
1

n

n∑
α=1



aα(1, 1) . . . aα(1, dt) . . . aα(1, 2dt) . . . aα(1, dsdt)
...

aα(dt, 1) . . . aα(dt, dt) . . . . . . . . . . . .
...

aα(2dt, 1) . . . aα(2dt, dt) . . . . . . . . . . . .
...

. . .
...

. . .

aα(dsdt, 1) . . . . . . . . . . . . . . . aα(dsdt, dsdt)



.

We may consider this matrix as a ds × ds matrix of dt × dt blocks. This consideration

will be useful for reshaping.

2.4.1. Blocking

Let A ∈ Rd×d with d = dsdt. Visualization of A in more detail is as follows

A =



a1,1 . . . a1,t . . . a1,2dt . . . a1,dsdt
...

adt,1 . . . adt,dt . . . . . . . . . . . .
...

a2dt,1 . . . a2dt,dt . . . . . . . . . . . .
...

. . .
...

. . .

adsdt,1 . . . . . . . . . . . . . . . adsdt,dsdt



.
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We consider this matrix as a ds × ds matrix of dt × dt blocks, and define A[i,j] as the

(i, j)th element of the block matrix. Also for simplicity, we define another submatrix

A[j] =


vec(A[1,j])

T

...

vec(A[ds,j])
T

 .

An example with ds = 3 and dt = 2, we can split A as

A =



a1,1 a1,2 a1,3 a1,4 a1,5 a1,6

a2,1 a2,2 a2,3 a2,4 a2,5 a2,6

a3,1 a3,2 a3,3 a3,4 a3,5 a3,6

a4,1 a4,2 a4,3 a4,4 a4,5 a4,6

a5,1 a5,2 a5,3 a5,4 a5,5 a5,6

a6,1 a6,2 a6,3 a6,4 a6,5 a6,6


.

Then we get

A[1,2] =

a1,3 a1,4

a2,3 a2,4

 and A[1] =


a1,1 a2,1 a1,2 a2,2

a3,1 a4,1 a3,2 a4,2

a5,1 a6,1 a5,2 a6,2

 .

We also define a subvector representation. For a vector v, define

v(dt, i) := [v](i−1)dt+1:idt .

2.4.2. Reshaping

Van Loan [10] defines a reshaping operation for reformulating the matrix ap-

proximation with the Frobenius norm minimization problem to rank-one (or rank-r)

approximation problem. With the notations from the previous section, we can define

the reshaping operator R as

R(A) :=


A[1]

...

A[ds]

 .

To be more precise, R : Rdsdt×dsdt → Rd2s×d2t sets the (i − 1)ds + j row of R(A) equal

to vec(A(i, j))T .
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Reshaping has an important role in this thesis, so we show some examples of

specific matrices in detail:

• Reshaping the sample covariance matrix Σ̂n ∈ Rdsdt×dsdt gives us a matrix with

dimensions dim(R(Σ̂n)) = d2s × d2t .

• The reshaped risk matrix of the SCM estimator Dn = R(Σ̂n) − R(Σ) can be

represented as:

Dn =


Σ̂[1] −Σ[1]

...

Σ̂[ds] −Σ[ds]



=
1

n

n∑
α=1


vec(vα(dt, 1)vα(dt, 1)

T )T − E[vec(v(dt, 1)v(dt, 1)T )T ]
...

vec(vα(dt, ds)vα(dt, ds)
T )T − E[vec(v(dt, ds)v(dt, ds)T )T ]

 .
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3. THEORY

In this chapter, we first discuss some related work and show some results that

are useful for the PRLS. Then we analyze the PRLS method in depth and prove some

significant, relevant results. Finally, we will propose a new method TRKF, and then

discuss discuss its methodology and improvements.

3.1. Historical Look

In this section, we first recall the canonical covariance estimation, SCM, and we

discuss how that estimation can be improved in certain situations. Then we describe

some of the related works that bring a better estimate. Also, we include some results

which will be useful when discussing the PRLS. We begin with a simple penalized

modification to SCM [16]. Secondly, we examine the first work that uses KP represen-

tation to estimate a matrix [10]. Then, we briefly describe Lu and Zimmerman’s [17]

“Flip-Flop” method for solving the MLE problem of Van Loan [10]. Before we start

analyzing the PRLS method, we discuss the works of Werner et al. [9] in depth as their

method outperforms all other methods in some situations.

3.1.1. Sample Covariance Matrix

Sample covariance matrix is the most basic approach for estimating the true

covariance matrix. Assuming {vi}nα=1 are n i.i.d. observations of a multivariate normal

variable v ∼ N(0, Σ). Then the sample covariance matrix Σ̂n is:

Σ̂n =
1

n

n∑
α=1

vαv
T
α .

When the observations are complete and represent the variables well enough, the SCM

is a good estimator of the covariance matrix. However, this is not necessarily always

the case. Especially when dealing with very high dimensions, not having a large enough

sample to represent the true distribution is a common problem.
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Many shortcomings of the SCM have lead to creation of many different estima-

tions, especially for small sample size there are many low-rank estimation methods.

3.1.2. Penalized Sample Covariance Matrix

Lounici [16] studies the low rank estimation problem on high dimensional data

with missing variables. They first reduce this problem to a convex minimization prob-

lem with adding a penalty term

min
A

∥Σ̂n − A∥2F + λ∥A∥1

where λ > 0 is the regularization parameter that penalizes the nuclear norm of the

estimation. Note that with this penalty term, they get a convex problem and it is

computationally efficient in high dimensions. They then modify this approach for

handling missing variables, but that part is not covered for staying in the scope of this

paper.

3.1.3. Not-Penalized Kronecker Estimator

Van Loan and Pitsianis [10] propose a reshaping (or as they call permutation)

method for solving the norm minimization problems of the form

min
B,C

∥A−B ⊗ C∥F

where A ∈ Rd×d, B ∈ Rds×ds and C ∈ Rdt×dt are matrices with d = dsdt.

They reformulate this approximation problem to a “rank-one” problem with re-

shaping the matrices. The reshaping is done with the mapping R as it was explained

in the Section 2.4.2. They prove that

∥A−B ⊗ C∥F = ∥R(A)− vec(B)vec(C)T∥F .

Then, calculating the singular values of R(A) gives the best values of vec(B) and

vec(C).
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3.1.4. Flip-Flop Algorithm

Lu and Zimmerman [17] propose a more general algorithm for estimating any

separable matrix. They solve a maximum likelihood estimation (MLE) problem with

their proposed “Flip-Flop” (FF) method. That method recursively estimates each

Kronecker factor while keeping the other one fixed. When one of the Kronecker factors

are known, the rank-one minimization problem becomes convex. Also, it is worth

noting that the FF method has many shortcomings in covariance estimation [9]. First,

FF algorithm lacks asymptotic efficiency due to its recursiveness. It also prohibits the

general linear structure that both Werner [9] and Hero [11] use to reduce the problem

to a low-rank minimization problem. Also, the special properties of the covariance

matrices, such as being positive definite, or sometimes Toeplitz, cannot be used for

advantage in FF.

3.1.5. Werner’s Kronecker Product Estimator

Werner et al. [9] propose multiple approaches for the covariance estimation prob-

lem. They start with assuming the separability of the covariance matrix to Kronecker

factors. Their first model modifies the FF algorithm to a less recursive version. They

note that their method gives remarkably close estimations with only three iterations

compared to huge number of iterations. Also their method is invariant to the initial

Kronecker factor values.

Their second method (R1LS) starts with criticizing the papers approximating via

minimizing the Frobenius norm because of their lack of asymptotic efficiency. Thus,

they are interested in minimizing a custom weighted norm that is dependent on the

sample covariance matrix. They propose a method which reshapes the matrices just like

Van Loan [10] to reformulate the problem to a rank-one approximation problem. After

the reformulation the custom weighted norm minimization problem can be solved with

SVD. Also, they note that when one of the Kronecker factors is Toeplitz, the estimator

works even better. Note that, when separating wind speed to spatial and temporal

covariance matrices, the temporal covariance matrix is of the form Toeplitz.
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3.2. Permuted Rank-Penalized Least Squares

One of the main problems in MLE when approximating the covariance matrix is

the non-convexness of the problem. As aforementioned, many different studies handle

this problem in many different ways. By reshaping the covariance matrix as Van

Loan [10] and adding a penalization like Lounici [16], one can reduce the approximation

problem to a convex low-rank optimization problem. Also instead of assuming Σ =

A⊗B and get a rank-one minimization problem, we assume Σ =
∑r

i=1Ai ⊗Bi to get

a rank-r minimization problem.

Stating the problem once more, let v ∈ Rd, be a multivariate normal random

variable with v ∼ N(0, Σ) and d = dsdt. Taking n i.i.d observations {vα}nα=1, we can

calculate the SCM Σ̂n = 1
n

∑n
α=1 vαv

T
α . Then assume the true covariance matrix Σ has

a KP expansion representation: Σ =
∑r

i=1Ai ⊗ Bi for some matrices Ai and Bi with

dim(Ai) = ds × ds and dim(Bi) = dt × dt. Before starting to rank-r problem, we show

some results for Σ = A⊗B then generalize it to the case where Σ =
∑r

i=1Ai ⊗Bi.

Theorem 3.1. [10, Theorem 2.1] Let Σ ∈ Rd×d with d = dsdt. If A ∈ Rdt×dt and

B ∈ Rds×ds, then

∥Σ − A⊗B∥F = ∥R(Σ)− vec(A)vec(B)T∥F .

Proof. Using the notations and the reshaping function R from Section 2.4.2:

∥Σ − A⊗B∥2F =
ds∑
j=1

ds∑
i=1

∥vec(Σ[i,j])− aijvec(B)∥22

=
ds∑
j=1

ds∑
i=1

∥vec(Σ[i,j])
T − aijvec(B)T∥22

=
ds∑
j=1

∥Σj − A[j]vec(B)T∥2F

= ∥R(Σ)− vec(A)vec(B)T∥2F .

The “rank-one” approximation problem can be solved with SVD.
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Corollary 3.2. [10, Corollary 2.2] If the matrix Σ with same properties has SVD as

UTR(Σ)V = ∆ = diag(σ(R(Σ)))

then the matrices A and B minimizing ∥Σ−A⊗B∥F are vec(A) = σ1u1 and vec(B) =

σ1v1, where σ1 is the largest singular value of R(Σ), u1 and v1 are the corresponding

singular vectors.

With the above results, we use SVD to get a rank-one approximation of a given

matrix. Generalizing the KP representation to KP series expansion:

Theorem 3.3. [10] Let Σ =
∑r

i=1 Ai ⊗ Bi, with the previous properties. Then the

following holds

R(Σ) =
r∑

i=1

R(Ai ⊗Bi) =
r∑

i=1

vec(Ai)vec(Bi)
T .

The matrix R(Σ) is a rank-r matrix, thus we get Ai = σiui and Bi = σivi for

i = 1, . . . , r. In this case, the minimizer is K = A ⊗ B where A and B are linear

combinations of Ai and Bi, i.e.

A = k1A1 + · · ·+ krAr

B = p1B1 + · · ·+ prBr.

With this generalization, we reformulate the covariance matrix approximation problem

to a rank-r approximation problem. Also, adding a penalty term gives us a convex

relaxation. For simplicity in notation, let M̂n := R(Σ̂n) and K :=
∑r

i=1R(Ai ⊗ Bi)

with dim(Ai) = ds × ds and dim(Bi) = dt × dt. Then the proposed reformation is

K̂λ
n = argmin

K∈Rd2s×d2t

∥M̂n −K∥+ λ∥K∥⋆

where λ > 0 is the penalization parameter. This problem has a closed solution, and it

can be obtained by solving a thresholded SVD

K̂λ
n =

min(d2s,d
2
t )∑

i=1

(
σi(M̂n)−

λ

2

)
+

uiv
T
i .

Here we are making a singular value decomposition on M̂n with M̂n = U∆V and ui

and vi are the i’th columns of the matrices U and V , respectively.



22

Before moving to properties of the estimator, below we summarize the procedure:

Algorithm 1 The PRLS Algorithm

Calculate the SCM: Σ̂n = 1
n

∑n
α=1 vαv

T
α .

Reshape SCM: M̂n := R(Σ̂n)

State the penalized minimization problem: K̂λ
n = min

K∈Rd2s×d2t
∥M̂n −K∥+ λ∥K∥⋆

Solve the problem with SVT:
∑min(d2s,d

2
t )

i=1

(
σ(M̂n)− λ

2

)
+
uiv

T
i

Inverse the reshaping: Σ̂λ
n := R−1(K̂λ

n)

Σ̂λ
n is the estimation.

3.2.1. PRLS Preserving Necessary Conditions

The inverse reshaped matrix is the estimation of the covariance matrix. However,

we need to show that it is a covariance matrix, i.e., it is symmetric and positive definite.

Theorem 3.4. [11, Theorem 1] Let Σ̂λ
n := R−1(K̂λ

n) denote the inverse reshaped ma-

trix. Then,

• Σ̂λ
n is symmetric with probability 1.

• When n ≥ d, Σ̂λ
n is a positive semi-definite matrix, with probability 1.

3.2.2. Relationship between Risk Matrices

After showing that the PRLS procedure preserves the necessary conditions for the

covariance matrix, it is time to show that the PRLS outperforms “the SCM estimator”

in convergence rate. Note that the convergence rate of the SCM estimator is

∥Σ̂n −Σ∥2F = OP (
dsdt
n

).

Now we show a result that gives a relationship between the SCM risk norm and

the PRLS risk norm.
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Theorem 3.5. [11, Theorem 2]

Assuming λ ≥ ∥M̂n −M∥2, the below inequality holds

∥K̂λ
n −M∥2F ≤ inf

K

{
∥K −M∥2F +

(1 +
√
2)2

4
λ2rank(K)

}
.

This result will be useful when setting a norm bound on the PRLS estimation

error in Section 3.2.4.

3.2.3. Bound on the SCM Estimation Error

Let Dn = M̂n − M = R(Σ̂n − Σ). One can see that, Dn → 0 a.s. as n → ∞.

This comes from the strong law of large numbers after fixing the spatial and temporal

dimensions. In addition to that, a bound for ∥Dn∥2 can be set with the next theorem.

Theorem 3.6 (Operator Norm Bound on Reshaped SCM [11, Theorem 3]). Assume

∥Σ∥2 < ∞ for all ds, dt and define N = max(ds, dt, n). Fix ε′ < 1/2. Assume

t ≥ max(
√

4C1 ln (1 +
2
ε′
), 4C2 ln (1 +

2
ε′
)) and C = max(C1, C2) > 0. Then, with

probability at least 2N− t
4C ,

∥Dn∥2 ≤
Ct

1− 2ε′
max{d

2
s + d2t + logN

n
,

√
d2s + d2t + logN

n
}.

Before the proof, we need to prove a useful lemma.

Lemma 3.7 (Concentration of Measure for Coupled Gaussian Chaos [11, Lemma

2]). Let x = [x1, . . . , xd2s
]T ∈ Sd2s−1 and y = [y1, . . . , yd2t ]

T ∈ Sd2t−1. In the Sample

Covariance Matrix notation, assume that {vα} are i.i.d. observations of multivariate

normal random variable v ∼ N (0, Σ). Then for all ε ≥ 0

P(
∣∣xTDny

∣∣) ≤ 2 exp

(
−nε2/2

C1∥Σ∥22 + εC2∥Σ∥2

)
where C1 =

4e√
6π

≈ 2.5044 and C2 = e
√
2 ≈ 3.8442 are absolute constants.

Proof. Following the latest representation of Dn, we can write xTDny as

xTDny =
1

n

n∑
α=1

ωα,
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where

ωk =

(
s∑

i,j=1

t∑
k,l=1

Xi,jYk,l

)(
[vt](i−1)t+k[vt](j−1)t+l − E

[
[vt](i−1)t+k[vt](j−1)t+l

])
with X := R(x) and Y := R(y).

After defining K = X ⊗ Y , we get

ωα = vT
αKvα − E

[
vT
αKvα

]
,

which is very difficult to analyze because of the correlated variables. Thus, we use

“joint Gaussian property of the data” to simplify it.

As the stochastic equivalent of vT
αKvα is bT

αK̃bα − E[bT
αK̃bα], where bα ∼

N (0, Idsdt) K̃ = Σ
1
2KΣ

1
2 . Note that this just changes vαs with N(0, Ist) random

variables and adds the mean to kronecker product part of the bilinear representation.

Then these equalities and inequalities follow:

E|ωα|2 = E
∣∣∣bTαK̃bα − E[bTαK̃bα]

∣∣∣2
= E

∣∣∣∣∣∑
i1 ̸=i2

[bα]i1 [bα]i2K̃i1,i2 +
d∑

i=1

([bα]
2
i1
− 1)K̃i1,i1

∣∣∣∣∣
2

=
∑
i1 ̸=i2

∑
i′1 ̸=i′2

E
[
[bα]i1 [bα]i2 [bα]i′1 [bα]i′2

]
K̃i1,i2K̃i′1,i

′
2

+
∑
i1

∑
i′1

E
[
([bα]

2
i1
− 1)([bα]i′21 − 1)

]
K̃i1,i1K̃i′1,i

′
1

=
∑
i1 ̸=i2

K̃2
i1,i2

+ 2
∑
i1

K̃2
i1,i1

= ∥K̃∥2F + ∥diag(K̃)∥2F

≤ 2∥K̃∥2F ≤ 2∥Σ∥22∥K∥2F = 2∥Σ∥22.

Note that for the last step we have used ∥K∥F = ∥X∥F∥Y ∥F = 1.

Now using a well known moment bound on Gaussian chaos [18, page 65] E|Z|q ≤

(q − 1)q(E|Z|2)q/2 and Stirling’s formula [19] q! =
√
2πqqqe−qeRq with (12q + 1)−1 ≤

Rq ≤ (12q)−1, we can show that, for all k ≥ 3:

E|ωα|k ≤
k!W k−1cα

2
,
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where

W = e
√

E|ωα|2 ≤ e
√
2∥Σ∥2

cα =
2e

6π
E|ωα|2 ≤

4e√
6π

∥Σ∥22.

Before concluding our proof, recall one of the Bernstein’s inequilites:

Proposition 3.8. [20] For {Xi} independent zero-mean random variables. Suppose

∥Xi∥ ≤ M almost surely, for all i. Then, for all ε > 0,

P

(∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(
nε2

2 + 2ε/3

)
. (3.1)

Directly from the Bernstein’s inequality, we can conclude the proof of the lemma:

P

(∣∣∣∣∣ 1n
n∑

α=1

ωα

∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(
−n2ε2/2

nu1 +Wnε

)
≤ 2 exp

(
−nε2/2

C1∥Σ∥22 + C2∥Σ∥2ε

)
.

Now we can start the proof of the Theorem 3.6.

Proof. Let Nd2s
and Nd2t

be ε’-nets on unit spheres Sd2s−1 and Sd2t−1, respectively. Let u1

and v1 be unit vectors from Sd2s−1 and Sd2t−1, respectively such that |uT
1Dnv1| = ∥Dn∥2.

By definition of ε′-net, we can find unit vectors u2 and v2 from the corresponding

spheres such that ∥u1 − u2∥2 ≤ ε′ and ∥v1 − v2∥2 ≤ ε′. Using that, we can write the

below inequality:

|uT
1Dnv1| − |uT

2Dnv2| ≤ |uT
1Dnv1 − uT

2Dnv2|

≤ |uT
1Dn(v1 − v2) + (u1 − u2)

TDnv2|

≤ |uT
1Dn(v1 − v2)|+ |(u1 − u2)

TDnu2|

≤ |uT
1 ||v1 − v2|∥Dn∥2 + |(u1 − u2)

T ||v2|∥Dn∥2 (3.2)

≤ 2ε′∥Dn∥2.
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The inequality (3.2) comes from the definition of spectral norm, and the fact that

u1 and v2 being unit vectors.

Now, swapping |uT
1Dnv1| with ∥Dn∥2, we get

∥Dn∥2 − |uT
2Dnv2| ≤ 2ε′∥Dn∥2

(1− 2ε′)∥Dn∥2 ≤ |uT
2Dnv2|

for any u2 and v2 satisfying above conditions. Then we can generalize to

(1− 2ε′)∥Dn∥2 ≤ max{|uT
2Dnv2| : u2 ∈ Nd2s

,v2 ∈ Nd2t
, ∥u1 − u2∥2 ≤ ε′, ∥v1 − v2∥2 ≤ ε′}

(1− 2ε′)∥Dn∥2 ≤ max{|uTDnv| : u ∈ Nd2s
,v ∈ Nd2t

}

∥Dn∥2 ≤ (1− 2ε′)−1 max
u∈N

d2s
,v∈N

d2t

|uTDnv|.

Note that, above we just generalized to the whole set, it is an obvious inequality.

Also using a bound on cardinality [14]

card(Nd2s
) ≤

(
1 +

2

ε′

)d2s

we get

P(∥Dn∥2 ≤ ε) ≤ P( max
u∈N

d2s
,v∈N

d2t

|uTDnv| ≥ ε′(1− 2ε′))

≤ P(
⋃

u∈N
d2s

,v∈N
d2t

|uTDnv| ≥ ε′(1− 2ε′))

≤ card(Nd2s
)card(Nd2t

)× max
u∈N

d2s
,v∈N

d2t

P(|uTDnv| ≥ ε′(1− 2ε′)

≤
(
1 +

2

ε′

)d2s+d2t

P(|uTDnv| ≥ ε(1− 2ε′)).

Then, using Lemma 3.7, we move further

P(Dn ≥ ε) ≤ 2

(
1 +

2

ε′

)d2s+d2t

exp

(
−nε2(1− 2ε′)2/2

C1∥Σ∥22 + C2∥Σ∥2ε(1− 2ε′)

)
.

Now, we need to consider two different cases: Gaussian tail and exponential tail.

Assume Gaussian tail properties hold, i.e. ε ≤ c1∥Σ∥2
C2(1−2ε′)

. In this case, we can

relax the bound to

P(∥Dn∥2 ≥ ε) ≤ 2

(
1 +

2

ε′

)d2s+d2t

× exp

(
−nε2(1− 2ε′)/2

2C1∥Σ∥22

)
.
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Then, choosing ε = t∥Σ∥2
1−2ε′

√
d2s+d2t+logN

n
, we get

P

(
∥Dn∥2 ≥

t∥Σ∥2)
1− 2ε′

√
d2s + d2t + logN

n

)
≤ 2

(
1 +

2

2ε′

)d2s+d2t

exp

(
−t2(d2s + d2t + logN)

4C1

)

≤ 2

((
1 +

2

ε′

)
e−t2/(4C1)

)d2s+d2t

N−t2/(4C1)

≤ 2N−t2/(4C1).

Gaussian tail case is proven. Now let’s assume that the tail is exponential, i.e. ε ≥
C1∥Σ∥2

C2(1−2ε′)
, and then set

ε =
t∥Σ∥2
1− 2ε′

d2s + d2t + logN

n
.

With that ε, we finalize our proof:

P
(
∥Dn∥2 ≥

t∥Σ∥2
1− 2ε′

d2s + d2t + logN

n

)
≤ 2

(
1 +

2

ε′

)d2s+d2t

exp

(
−t(d2s + d2t + logN)

4C2

)
≤ 2

((
1 +

2

ε′

)
e

−t
4C2

)
N

− t
4C2

≤ 2N
− t

4C2 .

Note that, we have used the assumption t ≥ 4C2 ln(1+
2
ε′
). After combining both cases

and letting C = ∥Σ∥2, we complete the proof. Also, note that t > 1 and tC2

C1
> 1.

3.2.4. Bound on the PRLS Estimation Error

Now we have bound on the reshaped PRSL estimation error from Theorem 3.5

and another bound on the reshaped SCM estimation error from Theorem 3.6. Using

these two results we can set a bound on the risk of PRLS estimator.

Theorem 3.9 (Frobenius Norm Bound on Estimation Error [11, Theorem 4]). Define

N = max(ds, dt, n). Set λ = λn = 2Ct
1−2ε′

max{d2s+d2t+logN

n
,

√
d2s+d2t+logN

n
} with t satisfying

the conditions of Theorem 3.6. Then, with probability at least 1− 2N− t
4C

∥Σ̂λ
n −Σ∥2F ≤ inf

K:rank(K)≤r
∥K −M∥2F
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+C ′r max

{(
d2s + d2t + logN

n

)2

,
d2s + d2t + logN

n

}
,

where

C ′ =

(
Ct

1 +
√
2

1− 2ϵ′

)2

=
(
3(1 +

√
2)Ct

)2
> 0.

Proof. Define the event:

Er =

{
∥K̂λ

n −M∥2F > inf
K:rank(K≤r)

∥K −M∥2F +
(1 +

√
2)2

4
λ2
nr

}
.

Theorem 3.5 implies that on the event λn ≥ 2∥Dn∥2, with probability 1, for any

1 ≤ r ≤ r0 we have

∥K̂λ
n −M∥2F ≤ inf

K:rank(K)≤r
∥K −M∥2F +

(1 +
√
2)2

4
λ2
nr.

Using the above inequality and Theorem 3.6, we get

P(Er) = P(Er ∩ {λn ≥ 2∥Dn∥2}) + P(Er ∩ {λn < 2∥Dn∥2})

≤ P(Er|λ ≥ 2∥Dn∥2)P(λn ≥ 2∥Dn∥2) + P(λn < 2∥Dn∥2)

= P(∥Dn∥2 >
Ct

1− 2ε′
×max

{
d2s + d2t + logN

n
,

√
d2s + d2t + logN

n

}
≤ 2N−t/4C .

To summarize, we showed some models motivated by the well-known Eckart-

Young theorem [15]. Then presented Van Loan’s [10] method for reducing the Eckart-

Young problem to a rank-one minimization problem. After that, we described Hero’s

[11] convex-relaxed improving to Van Loan’s results, in detail. We have presented the

necessary propositions for the penalized low-rank estimation to give a mathematically

valid covariance estimation. Following that, we have analyzed the relationship between

risk matrices of argued methods. Then, we gave proof for an operator norm bound on

the reshaped SCM estimation. Finally, we have shown a Frobenius norm for the PRLS

estimation error and proved that the norm converges with a known high probability.
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3.3. Temporally Reinforced Kronecker Factorization

In wind analysis and many other Spatio-temporal topics, it is possible to find

different settings with similar temporal characteristics. Also, even though there is a

huge amount of data being observed for a long time, many new sensors are still being

placed every day. In addition, there sometimes may be problems with the continuity

of the data, which leaves us with only a small number of observations. However, we

may have prior knowledge about the data, and we want to improve our model with

this knowledge. We consider using previously analyzed temporal properties of an ex-

isting data to reinforce another data with fewer observations to make better covariance

estimations. We named our method Temporally Reinforced Kronecker Factorization

(TRKF).

Before explaining TRKF, we first assume the existence of the separable true

covariance matrix. Then, we present a new covariance estimate which we call Spatio-

temporally Decomposed Kronecker Product (SDKP). For SDKP, we first decompose

the data sample to spatial and temporal data. The spatial data contains only the

spatial features (e.g., locations) as variables and the temporal data contains features

as time indices. The spatial data is straightforward, but the temporal data is actually

an estimate representing the temporal relationship of the data. As an example let the

data X that we are interested in contains the features of the form L
(tj)
i for i = 1, . . . , p

and j = 1, . . . , q. Then the spatial data will contain the features Li for i = 1, . . . , p

and the temporal data will contain t0, . . . , tq as features. After this decomposition,

we calculate the SCM of both parts and take their Kronecker product as our SDKP

covariance estimate. We argue that this estimation is a little smoother version of the

SCM and more robust to outliers. However, unlike previously discussed methods, we

do not expect this method to perform well under a small sample size.

Now we can define TRKF, assume that the true covariance matrix Σ ∈ Rd×d is

separable, i.e. Σ = A ⊗ B, for A ∈ Rds×ds and B ∈ Rdt×dt , with d = dsdt. Then

we argue that, when the number of observations is low, instead of using the SCM,

we may reinforce the SDKP model with an externally obtained temporal covariance
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matrix. In SDKP, we calculate the temporal and spatial covariance matrices, then

we switch or modify the temporal covariance matrix with another temporal covariance

matrix obtained by the same method from another sample that carries similar temporal

characteristics.
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4. EXPERIMENTATION

We compare the SCM and Kronecker-based methods on synthetic simulations

and real-world applications. We calculate the error matrices for the true covariance

matrix for comparison. Also, we observe the explained variance of the components for

each approximation in detail.

4.1. Simulation

4.1.1. Data Generation

For simulation, we generate two types of true covariance matrices of the form Σ =∑3
i=1Ai ⊗ Bi with dimension d = 600 where ds = 30 and dt = 20. The first matrices

have their Kronecker factors with no appointed structure other than being symmetric.

We randomly generate matrices X with i.i.d entries from N (0, 1) distribution then

create the positive semi-definite Kronecker factors by setting Ai = XXT . We generate

the second type of matrices similarly; the only difference is one of the Kronecker factors

(Bi) being Toeplitz. We call these matrices of type 1 and type 2 throughout this section.

We generate 10 different matrices of each type. Then for each matrix, we generate

5 different random data of size 500. For each n ∈ {5, 10, 20, 40, 60, 80, 100}, we pick 3

random subsamples from each data.

4.1.2. Covariance Estimations

We first calculate the SCM for each subsample. Then, we reshape the SCM

and do partial SVD and SVT to calculate the R1LS and the PRLS, respectively. We

measure the performance of each estimation with the Frobenius norm and matrix-1

norm. Also, we observe the explained variance of the PRLS estimation and compare

it with the principal components obtained from the SCM.
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Figure 4.1. A visual representation of the true covariance matrices. The first one is a

type-1 matrix that has symmetric Kronecker factors. The second one has a Toeplitz

Kronceker factor. The yellow color indicates a higher value.

Comparing the true covariance matrices in Figure 4.1, we can see that having

a Toeplitz factor makes the matrix much more structured. With this structure, it is

possible to explain most of the variance with only one component.

In Figure 4.2, we can observe that the approximations made with Kronecker

factors are more accurate than the classical approach. In general, the PRLS and the

R1LS do not dominate each other’s performance for n < 40. However, for n > 40, the

PRLS almost consistently outperforms the R1LS. Both of these methods always give

better estimates than the SCM. Also, we have tried different methods for generating

random matrices, and they gave similar results, with some having the PRLS dominance

for all n, but we did not include them here.
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Figure 4.2. A simulation result example. The Frobenius norm comparison of

estimations for a type-1 matrix with ds = 30, dt = 20. The Frobenius norms of the

risks are scaled after log-normalizing for visual easiness.

In Figure 4.3, we see that almost all of Kronecker’s spectrum energy is contained

in the first three components, with the first component carrying around 67% of the

variance. The energy of the eigenspectrum is much more spread, with the first PC car-

rying only 1% of the energy. With this picture in mind, we again underline Kronecker

factorization’s power. Kronecker-based models not only make a better estimate, but

they also have a low rank compared to the classical approach. This advantage grows

even more in the type 2 matrices. To sum up, with reshaping, we were able to extract

most of the variance in the least amount of PCs.
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Figure 4.3. Explained variance of the PRLS and the eigenspectrum of the true

covariance matrix.

Figure 4.4. A simulation result example for a type-2 matrix. The Frobenius norm of

the risks are log-normalized and scaled for visual easiness.
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In Figure 4.4, For matrices of type 2, we again observe better approximations

for all n. Observing Figure 4.5, we see the Kronecker spectrum becoming even denser

with a Toeplitz factor. This was expected as we got a repetitive structure in the

covariance matrix with a Toeplitz factor. As the first component contains almost the

entire spectrum energy, approximations made with the PRLS and the R1LS do not

differ significantly.

Figure 4.5. Explained variance comparison for a type-2 matrix.

We ran 150 simulations for each matrix type and every n. Almost all of them had

similar results that verified the figures. We confirmed that better approximations could

be made with the Kronecker structure even with a tiny number of samples. Also, we

observed that Kronecker-based models could explain the data with significantly fewer

components. Having a Toeplitz matrix as a Kronecker factor creates a more structured

matrix. We regard this situation when dealing with real-world applications, too. Thus

this improvement for the Toeplitz matrices is valuable for us.

Also, as a small note, in almost all of our simulations, we observe that instead of

doing SVT with tuning λ, doing SVD with tuning expected r performs slightly better.

Also, it will be more practical than tuning λ if the data is not well-prepared.
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4.2. Wind Speed

4.2.1. Data

We use wind speed data from 6 different regions on the western side of Turkey

to forecast wind-based electricity production from wind turbines in these regions [21].

The regions of the sensors and the turbines are: Aliağa, Bares, Dinar, Geycek, Söke and

Soma. We will number them from station 1 to 6, alphabetically. Hourly observations

are obtained from each station and turbine. The total number of sensors of the stations

vary; Station-1 has nine sensor on a three-by-three grid, the stations numbered from

2 to 5 have 16 sensors on four-by-four grids, and the last station has 12 sensors on a

three-by-four grid. Also, we used a time window of 7 hours long.

We process the raw data with the following steps: First, we combine u and v

speed vectors to make a velocity scalar. Then, we scale the production values to fit

between 0 and 1; we use logistic regression because wind turbines have a maximum

production capacity. Finally, we transform the data into a Spatio-temporal format,

also thinking A as the spatial and B as the temporal factor in A⊗B format.

4.2.2. Covariance Estimations

Here we analyze the covariance approximations. From the law of large numbers,

we expect the true covariance matrix to be closely approximated by the SCM for

n = 36000. We assume this matrix represents the true covariance matrix. Then for

different values of n between 10 and 200, we compare the approximations: SCM and

the PRLS with calculating the Frobenius norm of the risk matrix. Also, we observe

the explained variance of the the PRLS to verify our simulated results once more.

In Figure 4.6, we observe that the PRLS gives a better estimate in all stations.

We tried different values for n between 10 and 200 and randomly picked 10 samples for

each n. The figure shows the case when n = 100 but this results hold for every n and

every random sample. Observing the explained variance in Figure 4.7, we see that the



37

PRLS approximations explained almost the full variance with one component. This

also creates a great advantage for dimension reduction studies.

Figure 4.6. Comparison of the PRLS and the SCM models. We can see that the

PRLS significantly outperforms the SCM in every station.

Figure 4.7. Explained variance comparison between the true covariance matrix and

the PRLS. Blue color indicates the PRLS.
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4.3. Temporally Reinforced Kronecker Factorization

In this section, we show that TRKF outperforms previously discussed models

significantly. For experimentation, we have used the same wind data as the previous

section, 6 different stations from Turkey. For the first experiment, we removed one

location from each station to use it as the temporal covariance matrix generator with

a big sample. We then applied TRKF model to the other locations with the removed

location as a reinforcer. For the second experiment, we used one station’s temporal

covariance to reinforce another. For the final experiment, we used an old but large

sample from the station to reinforce the same station.

We use n observations ranging from 10 to 200. For each n, we take 5 different

random samples from the data. We tried different values of λ for the PRLS and included

r = 2 in the final comparisons.

Figure 4.8. An example result from the first experiment. The numbers above the

plots represent the corresponding stations.
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Observing Figure 4.8, we can see that TRKF outperforms all other models, es-

pecially for a sample size case. We have observed similar results for almost every case.

We were expecting these results as we could use a reasonable estimate of the temporal

knowledge with a nearby station. We obtained even better results for the third exper-

iment but did not include it because it was even more in favor of TRKF. However, for

the second experiment, the results were mixed; some stations were helping each other

well, and others were not.

To conclude, we have shown that we could create temporal and covariance matri-

ces by decomposing the data. This decomposition helped us improve the performance

as there are many settings with similar temporal matrices.
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5. CONCLUSION

We have analyzed different covariance estimation methods using KP or KP ex-

pansion representations of the true covariance matrix. We used previously proposed

results to show that the Frobenius norm minimization problem, which is not convex,

can be reduced to a convex low-rank minimization problem with a KP expansion rep-

resentation assumption for the true covariance matrix. We have inspected the PRLS

method in detail and gave results about its convergence to the true covariance. Then

we represented some simulation results that verified the theoretical findings. Also, we

have used real-world wind speed data to show that these results are applicable in real

life. We also want to note that having a dense Kronecker spectrum may also benefit

feature selection studies. For future work, we may change the Gaussian random data

assumption. This change is especially desirable because we have observed that wind

speed data does not usually have a Gaussian distribution. In our observations, we have

seen a distribution similar to the Weibull distribution. Also, Covariance matrices with

more than two Kronecker factors may be studied. Using different types of matrices

as Kronecker factors is also worth noting for the future. Some methods for modifying

non-positive definite matrices to become p.s.d. may also be studied. Finally, combin-

ing temporal knowledge from different fields may be possible with our proposed TRKF

method.
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