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Quantile Regression 
& 
Quantile Regression Averaging
Notes from chapter 1 of the textbook “Quantile Regression”, Koenker 
&  
the article: 
“Computing electricity spot price prediction intervals using quantile regression and 
forecast averaging”, 
Nowotarski, Weron, 2014



Motivation

• Quantile regression is intended to offer a comprehensive strategy for completing 
the regression picture 

Mosteller and Tukey (1977) remark: 



What is a “quantile”?

• Any real-valued random variable X may be characterized by its distribution 
function: 


• And for any ,


•   is called the ’th quantile of 

F(x) = P(X ≤ x)
0 < τ < 1
F−1(τ) = inf{x : F(x) ≥ τ} τ X



Least Squares Error
Why widely used?
• Computationally nice.


• If noise is normally distributed, performs well.


• Provides a general approach to estimating conditional mean functions. 


• But as Mosteller and Tukey stated, mean is rarely satisfactory.


• When we might be interested in describing the relationship at different 
points in the conditional distribution of y, Quantile Regression is helpful.



Quantile Regression
• Classical linear regression methods are based on: minimizing sums of 

squared residuals to estimate models for conditional mean functions.


• Quantile regression methods offer a mechanism for estimating conditional 
median function, and/or the full range of other conditional quantile 
functions. 

• What does quantile regression minimize?



The Minimization Problem
• Least Squares Loss Function:


• , where 



• i.e. 


• Quantile Loss Function:


• ,           if 


• , if 

L = (y − Xβ)2

β is the coefficient of the linear model and X is the feature used for prediction

L = (y − ̂y)2

L = τ(y − ̂y) y ≥ ̂y

L = (1 − τ)( ̂y − y) y < ̂y



The Minimization Problem
• Least Squares Loss Function:


• , where 



• i.e. 


• Quantile Loss Function:


• ,           if 


• , if 

L = (y − Xβ)2

β is the coefficient of the linear model and X is the feature used for prediction

L = (y − ̂y)2

L = τ(y − ̂y) y ≥ ̂y

L = (1 − τ)( ̂y − y) y < ̂y

i.e. 
 we want to penalize loss if: 

the percentile  is low, but the prediction  is high 
the percentile  is high, but the prediction  is low 

τ ̂y
τ ̂y



The Minimization Problem
• A (Least Square) Linear Regression Model tries to minimize:


• 


• Quantile Regression Model tries to minimize:


•

∑
i

(yi − ̂yi)2

∑
i:yi≥ ̂yi

[(τ(yi − ̂yi)] + ∑
i:yi< ̂yi

[(1 − τ) |yi − ̂yi | ]



Median Regression / Least Absolute Deviations

• We can see that choosing  gives us Least Absolute Deviation (LAD) 
(minimizing L1-norm)

q = 0.5

• For example, if an underestimate is marginally three times more costly 
than an overestimate, we will choose  so that  is three times 
greater than  to compensate. That is, we will choose  to be the 
75th percentile of . 

̂x P(X ≤ ̂x)
P(X > ̂x) ̂x

F

Some notes:



Advantages of quantile regression (QR)

•While OLS can be inefficient if the errors are highly non-normal, QR is 
more robust to non-normal errors and outliers. 

•QR also provides a richer characterization of the data, allowing us to 
consider the impact of a covariate on the entire distribution of , not 
merely its conditional mean.

•Furthermore, QR is invariant to monotonic transformations. So the 
inverse transformation may be used to translate the results back. 

y



Quantile Regression Averaging
Notes from the paper of Jakub Nowotarski and Rafał Weron

• QRA is first defined/published in Nowotarski and Weron’s paper 
in 2014.


• Published as a new method for constructing Prediction Intervals 
(PI).



• QRA uses quantile regression with point forecasts from other individual 
models:

Quantile Regression Averaging



QRA
Why Point Forecast?

• “Quantile Regression Averaging (QRA) yields an interval forecast of the spot price, but 
does not use the PI (prediction intervals) of the individual methods. 


• This is an important point, since as Wallis (2005) remarks: combining intervals directly 
will not in general give an interval with the correct probability. 


• For instance, Granger et al. (1989) attempt to overcome this difficulty by estimating 
combining weights from data on past forecasts that in effect recalibrate the forecast 
quantiles.”


• From wikipedia:


• One of the reasons for using point forecasts (and not interval forecasts) is their 
availability. For years, forecasters have focused on obtaining accurate point predictions.



QRA
The Minimization Problem (Almost same as QR)



One example for understanding the difference
QRA

• Recall that LAD = Least Absolute Deviation (minimizing L1 error)


• QRA-based  PI  LAD-based  PI:


• QRA: running quantile regression for  and 


• LAD: running quantile regression for  then taking  and  
quantiles of the distribution of forecast errors (residuals).

50 % ≠ 50 %
q = 0.25 q = 0.75
q = 0.5 25 75 %



To Sum Up
What I need from the Traffic Models for QRA?

• Only the predictions from different individual(?) models.



A more detailed look on the book
Consider a simple problem:
If loss is described by the function , 

 ,for some .  

Find  to minimize expected loss. 

We seek to minimize:





Differentiating wrt to , we have:





Since  is monotone, any element of  minimizes expected loss.


When the solution is unique , ow, we have an “interval of th quantiles” from which we may choose 

the smallest element. (To adhere to the convention that the empirical quantile function to be left-continuous)

ρ(u) = u(τ − 1(u < 0)) τ ∈ (0,1)
̂x

Eρt(X − ̂x) = (τ − 1)∫
̂x

−∞
(x − ̂x)dF(x) + τ∫

∞

̂x
(x − ̂x)dF(x) .

̂x

0 = (1 − τ)∫
̂x

−∞
dF(x) − τ∫

∞

̂x
dF(X) = F( ̂x) − τ

F {x : F(x) = τ}
̂x = F−1(τ) τ



A more detailed look on the book

• It is natural that our optimal point estimator for asymmetric linear loss should 
lead us to the quantiles.


• In the symmetric case of absolute value loss, it yields the median.


• When loss is linear and asymmetric we prefer a point estimate more likely to 
leave us on the flatter of the two branches of marginal loss. 


• Thus, for example: if an underestimate (i.e. ) is marginally three times 
more costly than an overestimate, we will choose  so that  is three 
times greater than  to compensate. That is, we will choose  to be 
the th percentile of .

x > ̂x
̂x P(X ≤ ̂x)

P(X > ̂x) ̂x
75 F



A more detailed look on the book
Empirical case

When  is replaced by the empirical distribution function,





We may still choose  to minimize expected loss





And doing so now yileds the th sample quantile. When  is an integer there is again some ambiguity in the 
solution,  because we really have an interval of solutions, , but we shall see that this is of little 
practical consequence.


Much more important is the fact that we have expressed the problem of finding the th sample quantile, which 
seems inherently tied to the notion of an ordering, as the solution to a simple optimization problem.

In effect we have replaced sorting by optimizing.

F
Fn(x) = n−1

n

∑
i=1

1(Xi ≤ x)

̂x

∫ ρτ(x − ̂x)dFn(x) = n−1
n

∑
i=1

ρτ(xi − ̂x) = min!

τ τn
{x : Fn(x) = τ}

τ



The simple case of ordinary sample quantiles

• Skipping for now. Not sure if really useful 

• Adding +-error values  as 2n dimensional vectors -> linear programming, polyhedral.

The problem of finding the th sample quantile





May be reformulated as a linear program by introducing  artificial, or “slack”, variables to represent the positive and 
negative parts of the vector of residuals. This yields the new problem,




where  denotes an n-vector of ones. Above, we are minimizing a linear function on a polyhedral constraint set, consisting of the 
intersection of the  dimensional hyperplane determined by the linear equality constraints and the set . Many feature of 
the solution are immediately apparent from this simple fact. For example,  must be zero for all , since otherwise, the 
objective function may be reduced without violating the constraint by shrinking such a pair toward zero.

This is usually called complementary slackness in linear programming. Indeed, for this same reason we can restrict attention to “basic 
solutions” of the form  for some observation .

τ
minξ∈ℝ

n

∑
i=1

ρτ(yi − ξ),

2n {ui, vi : 1,...,n}

minξ,u,v ∈ ℝ × ℝ2n
+ {τ1′ nu + (1 − τ)1′ nv |1′ nξ + u − v = y}

1n
(2n + 1) ℝ × R2n

+
min{ui, vi} i

ξ = yi i


